Geometry Notes S - 1: Similarity

Review

Rigid motion (aka isometry): a composition of transformations that

Basic rigid motions:

Major properties: 1.

2.

Congruent: two figures are congruent if

Ex: a. Describe a sequence of basic rigid motions that could show $\Delta ANT \approx \Delta BUG$ (Remember, there is more than one correct answer.)

b. Are the two triangles congruent?

Congruence is nicely defined in terms of rigid motions. But rigid motions are not a convenient method to actually decide if two figures are congruent. So for triangles, we developed some congruence theorems:

 $\Delta \simeq \Delta$ if:

New

Similarity transformation: a composition of transformations that

Ex: $\triangle ABC$ has AB = 12 and BC = 18.

- a. After the transformation T, A'B' = 18 and B'C' = 24. Is T a similarity transformation?
- b. After the transformation S, A'B' = 8 and B'C' = 12. Is S a similarity transformation?

Which of the basic transformations we learned are similarity transformations?

Major properties: 1.

2.

Similar: two figures are similar if

Ex: a. Describe a similarity transformation that could show $\Delta CAT \sim \Delta DOG$ (Note: There is more than one correct answer.)

b. Are the two triangles similar?

Properties of similar polygons:

- a. All pairs of corresponding (matching) angles are
- b. All pairs of corresponding (matching) sides are
- NOTE: Just like for congruent polygons, similarity statements are written so that corresponding vertices are in the *same order*.

Ex: If $ABCD \sim PQRS$, then

Ex: Is *ABCD* ~ *PQRS*?

Ex: Is *ABCD* ~ *PQRS* ?

Ex: a. Are the two rectangles shown similar?

b. Are the two parallelograms shown similar?

Ex: In the diagram, $ABCDE \sim JKLMN$

a. Find $m \angle K$.

b. Find MN.

Geometry HW: Similarity - 1

- 1. The two triangles shown at right are similar.
 - a. Complete the similarity statement: _____ ~ ΔDOG

b. Describe a similarity transformation that would take the first triangle onto the second.

2. Assuming they are similar, describe a similarity transformation that would take $\triangle ABC$ onto $\triangle RST$.

- 3. a. Assuming the figures at right are similar, describe a similarity transformation that would take the smaller figure onto the larger onto the larger.
 - b. Find the length of \overline{DO} .
- 4. Explain why not all rectangles are similar and draw a diagram to illustrate.
- 5. Explain why not all rhombuses are similar and draw a diagram to illustrate.
- 6. Are all squares similar? Why or why not?
- 7. Are the two parallelograms at right similar? Justify your answer.

8. Are the two parallelograms at right similar? Justify your answer.

- 9. In the diagram at right, quadrilateral *ABCF* ~ *FEDC*.
 - a. Find $m \angle AFC$.
 - b. Find $m \angle E$.
 - c. Find the length of \overline{AB} .
 - d. Find the length of \overline{CD} .

10. Arka Tek has a proposal for a new skyscraper. She has made a scale model of her design; the long side of the base of her model measures 18 inches and the model is 68 inches high. Ms. Tek envisions the actual building having a long base of 432 feet. How high will it be?

- 11. $\triangle ABC$ is similar to $\triangle DEF$ and the ratio of similarity of the triangles is 5:4. a. If AB = 15, find *DE*.
 - b. If $m \angle A = 50^\circ$, find $m \angle D$.