Warm-up

Determine if the three points R(-7, -5), S(5, 2) and T(12, 6) are collinear. Justify your answer. (Think: If all three are on the same line, what must be true about the slopes of \overline{RS} and \overline{ST} ?)

all three are on the same line, what must be true about the slopes of RS and ST?)

$$RS = \frac{V - Y}{X - X} = \frac{-5 - 2}{-7 - 5} = \frac{-7}{-12}$$

$$= \frac{7}{12}$$
Not Same slope so the same line, what must be true about the slopes of RS and ST?)

$$= \frac{6 - 2}{12 - 5} = \frac{4}{7}$$

$$= \frac{7}{12}$$
Not Same slope so the same line, what must be true about the slopes of RS and ST?)

Y=mx+b

Slope Y-int

Ex: JWrite an equation for the line in the graph:

$$Y = m \times t'b$$
 $Y = -\frac{3}{4} \times t + 2$

Ex: Write an equation for the line having slope $\frac{2}{5}$ and passing through the point (-4, 7). y - y = m(x - x)

$$y-y=m(x-x)$$

 $y-7=\frac{2}{5}(x-(-4))$

Ex: Write an equation of the line that passes through the points (-3, 12) and (9, -8). y - y = x

$$y-y=m(x-x)$$

 $y-12=\frac{5}{-3}(x_{\tau}(+3))$

$$\frac{1}{12} = \frac{5}{12} \times \frac{5}{12} = \frac{20}{12} = \frac{5}{12}$$

$$\frac{5}{12} = \frac{5}{12} \times \frac{5}{12} = \frac{5}{12}$$

Ex: Write an equation of the line parallel to the line 3x + 2y = 5 and passing through the point (-8,3) 4 - 4 = 10 4 + 2y = 5 5 + 2y = 5

$$y-3 = -\frac{3}{2}(x+(+8))$$

$$y-3 = -\frac{3}{2}(x+(+8))$$

$$y-3 = -\frac{3}{2}(x+(+8))$$

$$y-3 = -\frac{3}{2}(x-1)$$

$$y=-\frac{3}{2}(x-1)$$

Name:	Date:	

Geometry HW: CG - 2

1. Find the slope and y-intercept for each of the following lines. Then graph each line on graph paper. (The lines may all be graphed on one set of axes but *label* each line.)

$$y-int 0$$

2. On a *new* set of axes, graph and label the following:
a.
$$y \ge x + 1$$
 b. $2x + 3y < 12$ c. $x \ge x + 3y < 1$

a. slope =
$$-2$$
, y-intercept is 6 b. slope = $\frac{1}{2}$; y-intercept at the origin c. slope = 0, y-intercept is 4

4. Find the equation of the line having slope 3 and passing through the point (4, -3).

$$y-y=m(x-x)$$

5. Find the equation of the line that passes through the points (3, 2) and (6, -4).

6. Find the equation of the line passing through the points (3, -2) and (3, 4).

- 7. a. Graph the line y = 3x 7.
 - b. For the line in part (a), how much does y change when x increases by 1 unit? Does y increase or decrease?
 - c. Graph the line $y = -\frac{1}{2}x + 3$. (This may go on the same axes as part a.)
 - d. For the line in part (c), how much does y change when x increases by 1 unit?
 - e. For the line $y = -\frac{3}{8}x + 6$, how much does y change when x increases by one unit? Does y increase or decrease? (Note: you should be able to answer this without needing to graph the line.)

- 8. The speed of sound at sea-level depends on temperature according to the equation S = 0.60T + 331.45 where S is the speed in meters per second and T is the temperature in degrees Celsius.
 - a. What is the slope of the line?
 - b. What is the speed of sound at 0°C?
 - c. Every time the temperature goes up by 1°C, by how much will the speed of sound change? Will it increase or decrease?