Review: Two figures are similar if

In similar figures,

- 1. All pairs of corresponding angles are
- 2. All pairs of corresponding sides are

<u>Similar Triangles</u>

- Theorem: If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.
- Given: $\triangle ABC$ and $\triangle DEF$ $\angle A \cong \angle D, \angle B \cong \angle E$
- Show via a similarity transformation that $\Delta A'B'C' \sim \Delta ABC$.

Ex: Write a similarity statement and give a reason why the triangles are similar.

b. If PR = 9 and PS = 10, find PT.

- 1. Are the triangles at right similar? Justify your answer.
- 2. Are all equilateral triangles similar? Justify your answer.
- 3. Are all isosceles triangles similar? Justify your answer.
- 4. Are all right triangles similar? Justify your answer.
- 5. Are all isosceles right triangles similar? Justify your answer.
- 6. Given: Trapezoid *ABCD* with $\overline{AB} \ P\overline{CD}$, diagonals \overline{AC} and \overline{BD} intersect at *E*.
 - a. Draw a diagram.
 - b. Prove: $\Delta ABE \sim \Delta CDE$
 - c. If AE = 3, BE = 4 and DE = 6, find the value of CE.

- 7. a. Given: \overline{AEC} and \overline{BED} , \overline{AFEC} , $\overline{AB} \perp \overline{BD}$, $\overline{CD} \perp \overline{BD}$ Prove: $\Delta ABE \sim \Delta CDE$
 - b. If $m \angle A = 28^\circ$, find $m \angle DEC$.
 - c. If AB = 60, BE = 32 and CE = 51, find CD and DE.

8. In the diagram at right, $\triangle ABE \sim \triangle CDE$. Find the value of *x*.

9. In the diagram at right, $\triangle ABE \sim \triangle DCE$. Find the value of *x*.

- 10. Given: $\triangle ABC$, P on \overline{CA} and Q on \overline{CB} so that $\overline{PQ} P \overline{AB}$.
 - a. Prove: $\Delta PQC \sim \Delta ABC$.
 - b. If CP = 6, CQ = 8 and CA = 15, find CB.
 - c. Find the following ratios: *CP*:*PA*, *CQ*:*QB* and *PQ*:*AB*. Are any of the ratios the same?

11. While solving for x in the diagram at right, Rufus wrote $\frac{6}{8} = \frac{5}{x}$ (these are called between-figure ratios). Goofus wrote $\frac{6}{5} = \frac{8}{x}$ (these are called within-figure ratios). Who got the right answer? What is the point of this question?

