Geometry Notes S - 6: Midpoints and Parallel Lines

Theorem: If a segment joins the midpoints of two sides of a triangle then it is parallel to and half the length of the third side of the triangle.

Given: $\triangle ABC$, *M* is the midpoint of \overline{AC} and *N* is the midpoint of \overline{BC} .

Prove: a. $\frac{MN}{AB} = \frac{1}{2}$ b. $\frac{MN}{MN} \parallel \frac{AB}{AB}$		
Statement	Reason	

Ex: In the diagram, *P*, *Q* and *R* are the midpoints of the sides of $\triangle ABC$. Find the perimeter of $\triangle ABC$.

Theorem: If a line parallel to one side of a triangle intersects the other two sides, then

- a. it forms two similar triangles and
- b. it divides the intersected sides in proportion.

If
$$\overline{PQ} \ P \overline{AB}$$
, then
 $\Delta PQC \sim \Delta ABC$ and $\frac{CP}{PA} = \frac{CQ}{QB}$

Proof:

Ex: Solve for x and y in the diagram at right.

Note: The converse of part b of the theorem is also true: If a line intersects two sides of a triangle and divides those sides in proportion, then it is parallel to the third side.

Ex: Is $\overline{PQ} P\overline{ST}$?

Geometry HW: Similarity - 6

1. Find the length of the line segment that joins the midpoints of the congruent sides of an isosceles triangle whose base measures 18.

- 2. In $\triangle ABC$, D, E and F are the midpoints of sides \overline{AB} , \overline{BC} and \overline{AC} respectively.
 - a. If FE = 7, find the value of AB.
 - b. If BC = 17, find the value of DF.
 - c. If ED = 3x 2, and AC = 4x + 4, find the numerical values of both ED and AC.

- 3. A segment joining the midpoints of two consecutive sides of a parallelogram measures 20. Find the length of one diagonal of the parallelogram.
- 4. In $\triangle ABC$, *M*, *R*, and *T* are the midpoints of sides \overline{AB} , \overline{BC} and \overline{CA} , respectively. If AB = 22, BC = 12, and AC = 16,
 - a. Find the perimeter of ΔABC .
 - b. Find the perimeter of ΔMRT .

5. In the diagram at right $\overline{DE} P \overline{AB}$. Find the values of x and y.

6. In the diagram at left, determine if $\overline{PQ} P\overline{AB}$ and justify your answer.

7. In the diagram at right, ΔMAN is isosceles with base MN = 4 and sides 6, $\overline{HT} \parallel \overline{MN}$ and HT = 3. Find the perimeter of quadrilateral *MHTN*.

8. In the diagram at left, $\overline{DE} \parallel \overline{AB}$, CE = x, AB = x + 15 and DE = EB = 6. Find the numerical value of *CE*.

9. In rectangle *ABCD*, *AB* = 8 and *BC* = 6. *E* and *F* are on \overline{AB} and \overline{BC} such that $\overline{EF} \parallel \overline{AC}$. If EF = 6.25, find the length of *EB*.

10. a. The sides of two squares are in the ratio 2:3. What is the ratio of the *areas* of the squares?b. The sides of two squares are in the ratio *a*:*b*. What is the ratio of the *areas* of the squares?