Geometry Notes CG - 7: Midpoint Formula

Ex: What is the midpoint of \overline{AB} with A(2, -3) and B(8, 7)?

Date_____

y (x₂, y₂) (x₁, y₁)

<u>Midpoint Formula</u>

Ex: Find the midpoint of \overline{RS} if R(a, a + 2) and S(3a, a - 8).

- Ex: Find the coordinates of N(x, y) if M(2, -3) is the midpoint of \overline{LN} and *L* has coordinates (-1, 2).
 - 1. Graphically
 - 2. Algebraically

† y			
			x
.↓			

Summary of Formulas

1. Distance:

Answer:

2. Slope:

Answer:

3. Midpoint:

Answer:

Name:_

Geometry HW: CG - 7

- 1. Find the coordinates of the midpoint of the segment that joins each pair of points:
 a. (6, 8) and (4, 10)
 b. (58, -65) and (-12, 94)
 c. (5a, 2b) and (a, 8b)
- 2. M(7, 4) is the midpoint of \overline{CD} . If the coordinates of C are (4, 6), find the coordinates of D.
- 3. The midpoint of \overline{PQ} is M(-1, 6). The coordinates of *P* are (x, y) and the coordinates of *Q* are (x + 8, -3y). Find the values of *x* and *y*.
- 4. Segment \overline{AB} has A(-2, 8) and B(10, -2). Find the coordinates of point Q on \overline{AB} such that $AQ = \frac{1}{4}AB$.
- 5a. Give an appropriate conclusion for each of the following. 1) \overline{AB} bisects \overline{CD} at M 2) \overline{CD} bisects \overline{AB} at M
- b. Which of the conclusions from part (a) would be true if \overline{AB} and \overline{CD} bisect each other at M?
- 6. Segment \overline{AB} has endpoints A(1, 2) and B(7, 4). Find the equation of the perpendicular bisector of \overline{AB} .

7. Verify using coordinate geometry that the line *l* with equation $y = \frac{3}{2}x + 2$ is the perpendicular bisector of

the segment \overline{AB} with endpoints A(-1, 7) and B(5, 3). (Note: this problem has two separate parts: *perpendicular* and *bisector*. Proving one does not automatically prove the other.)