Warm-up

Triangle *PQR* has angles in the ratio of 2: 3: 5. What type of Triangle is it?

5. Given: $\overline{BR} \cong \overline{BS}$,

 $\overline{TR} \cong \overline{GS}$.

Conclusion/Reason: ___

Name _			
		Geometry HW: Intro Geo Proofs – 6 Multiplication and Division P	ostulates
and <i>giv</i> be eithe below.	e a reas er a brie Treat e	em, use the definitions and postulates we have covered to state a valid content for your conclusion. Good conclusions should use all the information is a statement of the definition used or the name of the postulate used. For each problem as separate (the givens for one problem do not apply to the \overline{BGS} , and \overline{RAS} for all eight problems.	in the givens. The reason should problems #1 - 5, use the figure
1.		\overline{AB} bisects $\angle \textit{RBS}$.	B
2.	Given:	$\overline{RA} \cong \overline{AS}$.	$R \xrightarrow{T \setminus G} S$
	Conclu	sion/Reason:	
3.		∠BAT≅∠BAG, ≅∠SAG	
	Conclu	sion/Reason:	
4.	Given:	$\overline{BR} \cong \overline{BS}$	
	Conclu	sion/Reason:	

The following are simple "statement-reason" geometry proofs. For each one, fill in the missing reasons with appropriate definitions or postulates.

6. **Given**: $\angle A$ is supplementary to $\angle Z$

 $\angle B$ is supplementary to $\angle Z$

Prove: $\angle A \cong \angle B$

<u>Statement</u>	Reason
1. $\angle A$ is supplementary to $\angle Z$ $\angle B$ is supplementary to $\angle Z$	1. Given
2. <i>m</i> ∠A + <i>m</i> ∠Z = 180	2
3. $m \angle B + m \angle Z = 180$	3. (same as #2)
4. $m\angle A + m\angle Z = m\angle B + m\angle Z$	4
5. <i>m</i> ∠Z = <i>m</i> ∠Z	5
6. $m\angle A = m\angle B$ or $\angle A \cong \angle B$	6

7. Given: $\overline{OR} \perp \overline{ON}$

Prove: $\angle ROT$ is complementary to $\angle NOT$

Statement	Reason
1. $\overline{OR} \perp \overline{ON}$	1. Given
2. ∠NOR is a right angle	2
3. <i>m∠RON</i> = 90	3
4. $m\angle RON = m\angle ROT + m\angle NOT$	4
5. <i>m∠ROT</i> + <i>m∠NOT</i> = 90	5
6. ∠ROT is complementary to ∠NOT	6

90

- In the diagram at right, $\,\overline{AOD}$, and $\,\overline{OC}\perp\,\overline{BOE}$, 8. $m\angle DOC = x^2 + 15$ and $m\angle AOB = 20x - 81$.
 - Find $m \angle BOC$.

X=26 /X=6

Find the value of x.

$$x^{2} + 15 + 20x - 81 + 90 = 180$$

$$x^{2} + 20x + 24 = 180$$

 $-180 - 180$
 $(x + 26)(x - 6)$

Find $m \angle DOE$. c.

Find $m \angle AOE$.

For the accompanying figure, state the pair of segments or angles that are congruent based on the following premises:

1. Given: \overline{AL} bisects \overline{BC} .

Conclusion: BL = LC

2. Given: \overline{BK} bisects $\angle ABC$.

Conclusion: < ABK = < KBC

3. Given: \overline{BK} bisects \overline{AL} .

Conclusion: $\overrightarrow{AP} \cong \overrightarrow{PL}$

4. Given: \overline{AL} bisects $\angle CAB$.

Conclusion: \BAL \alpha \CAL

Making Conclusions: For each piece of given information make a valid conclusion based on the following diagram.

- 1. BD bisects ∠CBE
- 2. E is the midpoint of \overline{BA}
- 3. \overline{BD} is an altitude of $\triangle CBE$
- 4. $\overline{BD} \cong \overline{ED}$

Name:	Date:
Name.	Date.

Geometry Notes Intro to Geo Proofs - 7: Statement-Reason Proofs

Proofs

A formal geometry proof is a series of statements in logical order. Each statement is justified by a reason.

Statements

- 1. Should start with one or more givens
- 2. Are facts/true that are relevant to the problem
- 3. Should follow a logical order

Each new statement should either

- a. Be a direct conclusion from one or more previous statements or
- b. Go together with one or more previous statements to lead to a conclusion
- 4. The final statement is whatever was to be proved.

Reasons

- 1. Should explain why the statement is true, often buy referring to previous statements
- 2. Acceptable reasons are
 - a. Given (but only if the statement really was given!)
 - b. Definitions: write them out.
 - c. Postulates: by name for the few that have a name; otherwise write them out.
 - d. Previously proven theorems: write them out.

Ex: Given: $\angle KJM \cong \angle NJL$

Prove: $\angle KJL \cong \angle MJN$

- 1. Mark the givens on the diagram. (See what you know.)
- 2. Work backwards. (Find out what you need to prove.)
- 3. Try to have a *plan*. (Figure out how to get from what you know to where you need to go.)
- 4. Write the proof.

Ex: Given: \overline{AMPL} , $\overline{AM} \cong \overline{EX}$, $\overline{EX} \cong \overline{PL}$

Prove: $\overline{AP} \cong \overline{ML}$

Statements	Reasons
1) AM = EX, EX = PL 2).AM = PL	1) given 2) Transitive
2).AM = PL	2) Transitive
3) MP = MP	3) Reflexive
Y) AP = ML	4) Addition

Nan	ne		
	Geometry HW: Intro Geo Pi	oofs – 7 Statement and	Reason Proofs
1.	Fill in appropriate reasons in the proof below.		<i>c</i>
	Given : $\angle AFE \cong \angle BFD$.		D E
	Prove: ∠AFD ≅ ∠BFE		
	<u>Statement</u>	Reason	A
	1. ∠AFE≅∠BFD	1	
	2. ∠DFE≅∠DFE	2	
	3. ∠AFE – ∠DFE ≅ ∠BFD – ∠DFE	3	
	or $\angle AFD \cong \angle BFE$		
2.	Write a complete "statement-reason" proof .		D E F C
	Given: \overline{AEFC} , $\overline{AE}\cong\overline{CF}$.		A
	Prove: $\overline{AF}\cong \overline{EC}$		
Stat	<u>sement</u>	<u>Reason</u>	

3. Fill in appropriate reasons in the proof below.

Given: \overline{BD} is an angle bisector of $\triangle ABC$, $\angle DBC \cong \angle DCB$

Prove: ∠DBA ≅ ∠DCB

Statement

1. \overline{BD} is an angle bisector of ΔABC

2. ∠*DBA* ≅ ∠*DBC*

3. $\angle DBC \cong \angle DCB$

4. ∠*DBA* ≅ ∠*DCB*

Reason

1. Given

2.

3. Given

4. _____

4. Write a complete "statement-reason" proof.

Given: E is the midpoint of \overline{BD} , $\overline{DE}\cong\overline{AB}$

Prove: AABE is isosceles

Statement 1) E is midpt of BD DE = AB 2) DE = EB 3) $\overline{AB} = \overline{EB}$	1) given 2) A midpt cuts a segment into 2 3) Transitive	Segnants
ABE is isosceles	4) An isosceles D has 2 = sides	

5. Given: $\angle A$ is a right angle; $\angle B$ is a right angle

a. Write a brief explanation of why $\angle A \cong \angle B$. Your explanation should refer to at least one postulate.

b. *Think*. Does the *logic* of your proof only work for the two right angles A and B shown above or will it work for other right angles? Are there right angles for which the logic would *not* apply?

You have (hopefully) proven the following simple but very important and useful theorem:

Theorem: All right angles are congruent.

Memorize.

Abbreviation: All rt. ∠s are ≅.