Warm- up
On half sheet of paper

Don't Forget Review
Due Today!! Counts as
a Quiz Grade

Write the equation of the perpendicular bisector of the points A(-1,-3) and B(5, 5)

Name:	<u> </u>	Date
	Geometry HW: CG - 7	
1. Find the coordinates of the material (6, 8) and (4, 10)	idpoint of the segment that joins ea b. (58, -65) and (-12, 94)	ch pair of points: c. $(5a, 2b)$ and $(a, 8b)$
2. $M(7, 4)$ is the midpoint of \overline{CL}	\overline{D} . If the coordinates of C are $(4, 6)$, find the coordinates of D .
3. The midpoint of \overline{PQ} is $M(-1, (x+8, -3y))$. Find the values of	6). The coordinates of P are (x, y) of x and y .	and the coordinates of Q are
4. Segment \overline{AB} has $A(-2, 8)$ and	d $B(10, -2)$. Find the coordinates of	of point Q on \overline{AB} such that $AQ = \frac{1}{4}AB$.
5a. Give an appropriate conclusion 1) \overline{AB} bisects \overline{CD} at M	on for each of the following \overline{CD} bisects \overline{AB} at M	1
b. Which of the conclusions fro	om part (a) would be true if $\frac{\overline{AB}}{AB}$ and	d CD bisect each other at M?

6. Segment \overline{AB} has endpoints A(1, 2) and B(7, 4). Find the equation of the perpendicular bisector of \overline{AB} .

7. Verify using coordinate geometry that the line l with equation $y = \frac{3}{2}x + 2$ is the perpendicular bisector of the segment \overline{AB} with endpoints A(-1, 7) and B(5, 3). (Note: this problem has two separate parts: perpendicular and bisector. Proving one does not automatically prove the other.)

Give the center and radius of the circle.

4.
$$x^2 + (y+3)^2 = 25$$

Center: (0,-3)

Radius: 5

5.
$$(x-5)^2 + (y-4)^2 = 1$$

Center: (___,__)

Radius:

Write the standard equation of the circle.

6. Center: (9,-1)

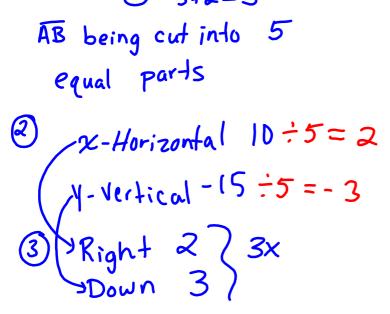
Radius: 2

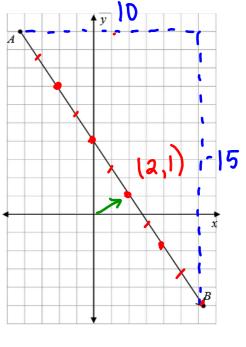
$$\frac{(x-9)^{2}+(y+1)^{2}=2}{(x-9)^{2}+(y+1)^{2}=4}$$

7. Center: (-3,7)

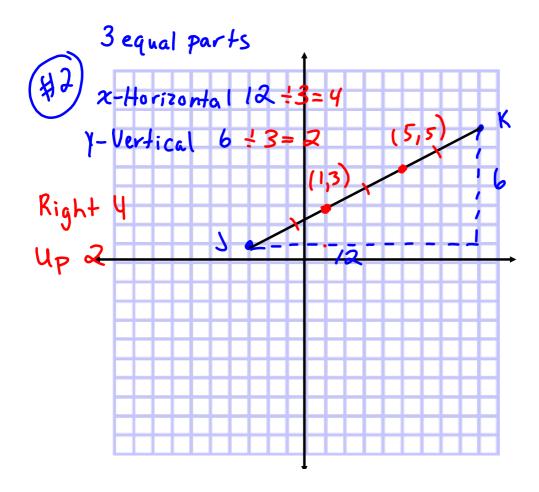
Radius: 6 Reese

$$\frac{(x+3)^2+(y-7)^2=6^2}{(x+3)^2+(y-7)^2=36}$$


Drag the star to the circle to check your answers.


Name: Date:_

Geometry Notes CG - 8: Dividing a Segment in Proportion


Ex: Find the coordinates of the point P on the directed line segment from A(-4, 10) to B(6, -5) that partitions the segment into a ratio of 32.

①
$$3+2=5$$

Naı	ne: Date:
	Geometry HW: CG - 8
1.	Find the coordinates of the point P on the directed line segment from $A(-8, 10)$ to $B(13, -4)$ that partitions the segment into a ratio of 3:4.
2.	Find the coordinates of the points P and Q that divide the segment from $J(-3, 1)$ to $K(9, 7)$ into three congruent parts. (What two ratios are implied here?)
3.	Write the equation of the line that is the perpendicular bisector of \overline{JK} with $J(-3, 1)$ and $K(9, 7)$.
4.	a. Write the equation of the circle having center (–2, 4) and radius $\sqrt{65}$.
	b. Does the point (-8, 9) lie on the circle? Justify your answer.
	c. Find two points on the line $x = 5$ that lie on the circle.

- 5. Graph $\triangle ABC$ having vertices A(0, 4), B(4, 14) and C(8, 0).
 - a. Find the midpoints of \overline{AB} , \overline{BC} and \overline{CA} . Call them M,N and P respectively.
 - b. Draw \overline{AN} , \overline{BP} and \overline{CM} . These are called medians of the triangle.
 - c. Find the point where all three medians intersect. Call it G. This is called the centroid of the triangle.
 - d. Show that G divides each median in a 2:1 ratio.