Date:_____

Summary of Formulas

1. Distance:

Answer:

2. Slope:

Answer:

3. Midpoint:

Answer:

Four Important Problems

1. Congruent:

To show line segments congruent:

2. Parallel:

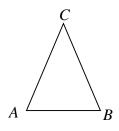
To show two line segments parallel:

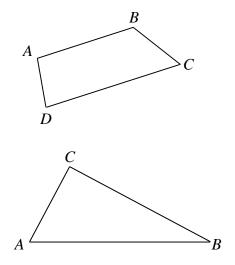
3. Perpendicular:

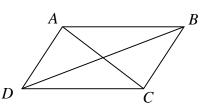
To show two line segments perpendicular:

4. Bisect each other:

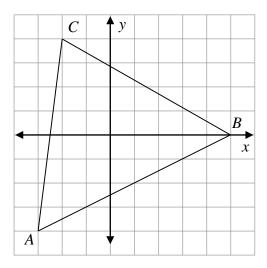
To show two segments bisect each other:







- Ex: $\triangle ABC$ has vertices A(-3, -4), B(5, 0) and C(-2, 4).
 - a. Show that $\triangle ABC$ is isosceles.



b. Find the coordinates of *D* on \overline{AB} such that \overline{CD} is a median of $\triangle ABC$.

c. Show that \overline{CD} is an altitude of $\triangle ABC$

Name:___

Date:_____

Geometry HW: CG - 9

Show work.

- 1. Quadrilateral *ABCD* has vertices A(-1, -1), B(2, 1), C(6, -2) and D(3, -4). Determine using coordinate geometry whether or not the diagonals* of *ABCD*
 - a. bisect each other.
 - b. are congruent.
 - c. are perpendicular.

Show work and give a reason for each of your answers.

**Diagonals* in a quadrilateral connect *opposite* vertices (angles). The diagonals of *ABCD* are \overline{AC} and \overline{BD} . You need to know this.

2. Triangle *ABC* has vertices A(-1, -2), B(3, 6), and C(11, 2). Show using coordinate geometry that $\triangle ABC$ is an isosceles right triangle. (Note: there are *two* parts to this problem, *isosceles* and *right*.)

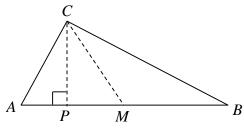
- 3. Given the points X(0, 3b), Y(a, 0), and Z(a + 6b, 2a); a. Find the length of \overline{YZ} .
 - b. Find the midpoint of \overline{YZ} .
 - c. Show that $\overline{XY} \perp \overline{YZ}$.

You must know these definitions:

A *median* of a triangle is a line segment that goes from one vertex of the triangle to the **midpoint** of the opposite side. In the figure, *M* is the midpoint of \overline{AB} , so \overline{CM}

is a median of $\triangle ABC$.

An *altitude* of a triangle is a line segment that starts from one vertex and is **perpendicular** to the opposite side (or to the line that contains that side). In the figure, $\overline{CP} \perp \overline{AB}$ so \overline{CP} is an altitude of $\triangle ABC$.



- 3. The vertices of $\triangle RST$ are R(11, -1), S(13, 10), and T(3, 5).
 - a. Find the length of the median from *S* to \overline{RT} .

- b. Show that the median from S to \overline{RT} is also an altitude of the triangle.
- c. Find the area of ΔRST .