Basic Constructions

Notes:

1. All segments are drawn with a straight-edge.
2. All segments are measured with a compass (not a ruler!).
3. The various arcs and segments created are called "construction marks." Do not erase them when you're done. If they do not all appear on your paper, you get no credit for the problem!

There are seven basic constructions:

1. Construct a segment congruent to a given segment $\overline{A B}$.
2. Locate a point A^{\prime} to be one endpoint of the new segment. (Sometimes the point is given.)
3. Measure segment $\overline{A B}$. Keeping compass the same size, move compass point to A^{\prime} and make arc in the area where you want the new segment to end. (Sometimes a ray is given.)
4. Draw a segment from A^{\prime} to any point on the arc, B^{\prime}.
5. Construct the perpendicular bisector of a given segment $\overline{A B}$.
6. Open compass to width greater than $\frac{1}{2}(A B)$.
7. With compass point on A, make large arc crossing $\overline{A B}$ twice. (Or two small arcs, one above, one below $\overline{A B}$.)
Keeping compass the same size, repeat with compass point on B.
8. With straight-edge, connect intersections of arcs.

you

3. Construct an angle congruent to a given angle $A B C$.

1. Draw ray $\overline{B^{\prime} C^{\prime}}$ (it is not necessary that it be congruent to $\overline{B C}$).
2. With compass point on B, draw arc over both sides of $\angle A B C$. (The points where the arc intersects the sides of the angle have been labeled P and Q
 for convenience.)
3. Without changing compass size, move point to B^{\prime} and draw similar arc.
4. Measure $\overline{P Q}$. Keeping compass the same size, place compass point on P^{\prime} and draw arc intersecting original arc. This intersection is Q^{\prime}.
5. Draw ray $\overrightarrow{B Q^{\prime}}$.

6. Bisect a given angle $A B C$.
7. With point on vertex B, draw an arc through both sides of $\angle A B C$. (The points where the arc intersects the sides of the angle have been labeled P and Q only for convenience.)
8. With point on P, draw arc shown in diagram. Without changing compass size, repeat with point at Q.
9. Draw bisector from vertex out through intersection of arcs from 2 .

10. Construct a perpendicular to a given line l through a given point P not on l.
11. With point on P and compass opened wider than distance P to l, draw two arcs on l (or one big arc intersecting l twice).
12. With point on intersection of first arc and l, draw new arc below l. Keeping compass the same size, repeat with point on intersection of second arc and l.
13. Draw segment from P through intersection of the newest two arcs.

14. Construct a perpendicular to a given line \boldsymbol{l} through a given point \boldsymbol{P} on \boldsymbol{l}.
15. With point on P, make two arcs on l, one each side of P.
16. Open compass wider. With point on intersection of one arc and l, make an arc above P. Keeping compass the same size, repeat with point on intersection of second arc and l.
17. Draw segment from intersection of newest two arcs through P.

7. Construct a line parallel to a given line l through a given point P not on l.

1. Draw any convenient line through P and intersecting l.
2. Follow directions for constructing congruent angles to construct $\angle b$ congruent to $\angle a$.

Alternative method:

1. Locate a convenient point on l; label it A.
2. With center at A and radius $A P$, draw an arc that intersects line l, label the intersection B.
3. Keeping radius $A P$, make arcs centered at P and B and intersecting on the opposite side of $\operatorname{arc} P B$ from A. Label the intersection Q.
4. Draw $\overline{P Q}$.

Other Constructions

8. Construct the line of reflection given a figure and its image.
9. Draw the segment connecting any point on $\triangle A B C$ to its image of $\triangle A^{\prime} B^{\prime} C^{\prime}$.
10. Construct the perpendicular bisector of that segment.
b. Construct the perpendicular bisector of that segment.

11. Locate the center of rotation and show the angle of rotation given a figure and its image.
12. Draw $\overline{A A^{\prime}}$ and $\overline{B B^{\prime}}$. (Any two points and their images will do as long as the segments are not parallel.)
13. Construct the perpendicular bisectors of $\overline{A A^{\prime}}$ and $\overline{B B^{\prime}}$. Label the point where they intersect O. This is the center of rotation.
14. Draw $\overline{O A}$ and $\overline{O A^{\prime}} . \angle A O A^{\prime}$ is the angle of rotation.

10a. Construct a diameter of a circle.
b. Locate the center of a circle.

1. Draw any convenient chord $\overline{A B}$.
2. Construct the perpendicular bisector of $\overline{A B}$; label the points where it intersects the circle C and. $\overline{C D}$ is a diameter.
3. (Not shown) Construct the midpoint (perpendicular bisector of $\overline{C D}$. This point is the center of the circle.

11a. Construct a regular hexagon inscribed in a circle.
b. Construct an equilateral triangle inscribed in a circle.

Note: If the center of the circle is not given, it must be found first.

1. Locate any point on the circle and label it A.
2. With center at A and radius $A O$, construct an arc that intersects the circle; label the intersection B.
3. With center at B and radius $A O$, construct an arc that intersects the circle on the other side of B from A; label the intersection C.
4. Continue as above until you have D, E, and F on the circle.
5. Draw $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D E}, \overline{E F}$, and $\overline{F A}$.

(Not shown) For an equilateral triangle, skip every other point in step 5: draw $\overline{A C}, \overline{C E}$, and $\overline{E A}$ or $\overline{B D}, \overline{D F}$, and $\overline{F B}$.
6. Construct a square inscribed in a circle.

Note: If the center of the circle is not given, it must be found first.

1. Locate any point on the circle and label it A.
2. Draw radius $\overline{A O}$; extend it to become diameter $\overline{A O C}$.
3. Construct the perpendicular bisector of $\overline{A O C}$; label the points where it intersects the circle C and D.
4. Draw $\overline{A B}, \overline{B C}, \overline{C D}$, and $\overline{D A}$.

5. Construct the circumcircle for a triangle.
6. Constrict the perpendicular bisectors of any two sides. Label their point of intersection O.
7. With center O and radius $O A$ (or $O B$ or $O C$), draw the circumscribed circle.

14. Construct the incircle for a triangle.

1. Bisect any two angles. Label the intersection of the bisectors O.
2. Construct a line through O perpendicular to any side of $\triangle A B C$. Label the point where it intersects the side R.
3. Draw the incircle with center at O and radius $O R$.

