BASIC CONSTRUCTIONS

Notes:

- 1. All segments are *drawn* with a straight-edge.
- 2. All segments are *measured* with a compass (*not* a ruler!).
- 3. The various arcs and segments created are called "construction marks." Do *not* erase them when you're done. If they do not all appear on your paper, you get *no credit* for the problem!

There are seven basic constructions:

1. Construct a segment congruent to a given segment \overline{AB} .

- 1. Locate a point *A*' to be one endpoint of the new segment. (Sometimes the point is given.)
- 2. Measure segment *AB*. Keeping compass the same size, move compass point to *A'* and make arc in the area where you want the new segment to end. (Sometimes a ray is given.)
- 3. Draw a segment from A' to any point on the arc, B'.

2. Construct the perpendicular bisector of a given segment \overline{AB} .

- 1. Open compass to width greater than $\frac{1}{2}(AB)$.
- 2. With compass point on A, make large arc crossing \overline{AB} twice. (Or two small arcs, one above, one below \overline{AB} .) Keeping compass the same size, repeat with compass point on B.
- 3. With straight-edge, connect intersections of arcs.

3. Construct an angle congruent to a given angle ABC.

- 1. Draw ray $\overline{B'C'}$ (it is not necessary that it be congruent to \overline{BC}).
- 2. With compass point on B, draw arc over both sides of $\angle ABC$. (The points where the arc intersects the sides of the angle have been labeled P and Q for convenience.)
- 3. Without changing compass size, move point to B' and draw similar arc.
- 4. Measure PQ. Keeping compass the same size, place compass point on P' and draw arc intersecting original arc. This intersection is Q'.
- 5. Draw ray \overrightarrow{BQ}' .

4. Bisect a given angle ABC.

- 1. With point on vertex B, draw an arc through both sides of $\angle ABC$. (The points where the arc intersects the sides of the angle have been labeled P and Q only for convenience.)
- 2. With point on *P*, draw arc shown in diagram. Without changing compass size, repeat with point at *Q*.
- 3. Draw bisector from vertex out through intersection of arcs from 2.

5. Construct a perpendicular to a given line l through a given point P not on l.

- 1. With point on *P* and compass opened wider than distance *P* to *l*, draw two arcs on *l* (or one big arc intersecting *l* twice).
- 2. With point on intersection of first arc and *l*, draw new arc below *l*. Keeping compass the same size, repeat with point on intersection of second arc and *l*.
- 3. Draw segment from *P* through intersection of the newest two arcs.

6. Construct a perpendicular to a given line l through a given point P on l.

- 1. With point on P, make two arcs on l, one each side of P.
- 2. Open compass wider. With point on intersection of one arc and *l*, make an arc above *P*. Keeping compass the same size, repeat with point on intersection of second arc and *l*.
- 3. Draw segment from intersection of newest two arcs through *P*.

7. Construct a line parallel to a given line l through a given point P not on l.

- 1. Draw any convenient line through P and intersecting l.
- 2. Follow directions for constructing congruent angles to construct $\angle b$ congruent to $\angle a$.

Alternative method:

- 1. Locate a convenient point on *l*; label it *A*.
- 2. With center at *A* and radius *AP*, draw an arc that intersects line *l*, label the intersection *B*.
- 3. Keeping radius *AP*, make arcs centered at *P* and *B* and intersecting on the opposite side of arc *PB* from *A*. Label the intersection *Q*.
- 4. Draw \overline{PQ} .

OTHER CONSTRUCTIONS

8. Construct the line of reflection given a figure and its image.

- 1. Draw the segment connecting any point on $\triangle ABC$ to its image of $\triangle A'B'C'$.
- 2. Construct the perpendicular bisector of that segment.
 - b. Construct the perpendicular bisector of that segment.

9. Locate the center of rotation and show the angle of rotation given a figure and its image.

- 1. Draw \overline{AA}' and \overline{BB}' . (Any two points and their images will do as long as the segments are not parallel.)
- 2. Construct the perpendicular bisectors of \overline{AA} and \overline{BB} . Label the point where they intersect O. This is the center of rotation.
- 3. Draw OA and OA'. $\angle AOA'$ is the angle of rotation.

10a. Construct a diameter of a circle.

b.Locate the center of a circle.

- 1. Draw any convenient chord AB.
- 2. Construct the perpendicular bisector of \overline{AB} ; label the points where it intersects the circle C and. \overline{CD} is a diameter.
- 3. (Not shown) Construct the midpoint (perpendicular bisector of CD. This point is the center of the circle.

11a. Construct a regular hexagon inscribed in a circle.

b. Construct an equilateral triangle inscribed in a circle.

Note: If the center of the circle is not given, it must be found first.

- 1. Locate any point on the circle and label it A.
- 2. With center at A and radius AO, construct an arc that intersects the circle; label the intersection B.
- 3. With center at B and radius AO, construct an arc that intersects the circle on the other side of B from A; label the intersection C.
- 4. Continue as above until you have D, E, and F on the circle.
- 5. Draw \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , \overline{EF} , and \overline{FA} .

(Not shown) For an equilateral triangle, skip every other point in step 5: draw \overline{AC} , \overline{CE} , and \overline{EA} or BD, DF, and FB.

12. Construct a square inscribed in a circle.

Note: If the center of the circle is not given, it must be found first.

- 1. Locate any point on the circle and label it *A*.
- 2. Draw radius \overline{AO} ; extend it to become diameter \overline{AOC} .
- 3. Construct the perpendicular bisector of \overline{AOC} ; label the points where it intersects the circle C and D.
- 4. Draw \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} .

13. Construct the circumcircle for a triangle.

- 1. Constrict the perpendicular bisectors of any two sides. Label their point of intersection *O*.
- 2. With center *O* and radius *OA* (or *OB* or *OC*), draw the circumscribed circle.

14. Construct the incircle for a triangle.

- 1. Bisect any two angles. Label the intersection of the bisectors *O*.
- 2. Construct a line through O perpendicular to any side of $\triangle ABC$. Label the point where it intersects the side R.
- 3. Draw the incircle with center at O and radius OR.

