Name:

Date:

Geometry HW: Intro Geometry Proofs - Review

3.	Give a suitable reason for step 2:	Statement	Reason
	(No diagram for this problem.)	1. $\overline{AB} \perp \overline{BC}$	1. Given
		2. $\angle ABC$ is a right angle 2.	

Using the diagram below, draw a valid conclusion for each set of givens and give a reason.

- 4. Given: \overline{BE} bisects $\angle ABC$
- 5. Given: $\angle BAE \cong \angle DCF$; $\angle DAE \cong \angle BCF$

- 6. Given: \overline{AEFC} , $\overline{AE} \cong \overline{EF}$; $\overline{EF} \cong \overline{FC}$
- 7. Given: $m \angle ABE + m \angle CBE = 120$; $m \angle ADF = m \angle CBE$
- 8. Given: \overline{FD} bisects \overline{EC}

Using the same diagram, write complete proofs for the following. (Note: each problem is independent of the others.)

9. Given: $\overline{BE} \perp \overline{AE}$ and $\overline{DF} \perp \overline{CF}$ Prove: $\angle AEB \cong \angle CFD$

10. Given: $\angle ABC \cong \angle CDA$; $\angle ABE \cong \angle CDF$

Prove: $\angle CBE \cong \angle ADF$

11. Given: \overline{AEFC} , $\overline{AE} \cong \overline{FC}$ Prove: $\overline{AF} \cong \overline{EC}$

12. Given: $m \angle BAE + m \angle ABE = m \angle AEB$; $m \angle AEB = 90$

Prove: $\angle BAE$ and $\angle ABE$ are complementary.

Problems #13 - 15 are arithmetic/algebraic problems, *not proofs*.

13. In the diagram at right, *L* is the midpoint of \overline{HP} and *E* is the midpoint of \overline{HL} . If *EL* = 12, find the length of *EP*.

Write a "statement-reason" geometry proof for each of the following.

16. Given: \overline{PENS} , $\overline{PN} \cong \overline{IG}$, $\overline{IG} \cong \overline{ES}$

Prove: $\overline{PE} \cong \overline{NS}$

17. Given: \overline{RID} , \overline{MIP} , \overline{IR} bisects $\angle BIM$, $\overline{IG} \perp \overline{RID}$ Prove: $\angle BIG \cong \angle PIG$

