\qquad
Geometry Notes Into to Geo Proofs - 3: Definitions and Drawing Conclusions Definitions (Review)

In math, a precise definition should work "both ways." (It is a biconditional.)
Ex: A triangle is a polygon with exactly three sides.

1. If a polygon is a triangle, then it has exactly three sides.
2. If a polygon has exactly three sides, then it's a triangle.

Ex: A square is a polygon with exactly four sides.

1. If a polygon is a square, then it has exactly four sides.
2. If a polygon has exactly four sides, then it's a square.

Drawing simple conclusions

We can use definitions to draw simple conclusions.

1. Given: M is the midpoint of $\overline{A B}$.

Conclusion:

Reason:

Note: Remember, in proofs, a "given" is assumed to be true.
2. Given: $\overline{P Q R}$ and $\overline{P Q} \cong \overline{Q R}$.

Conclusion:

Reason:
3. Given: $m \angle A B C+m \angle X Y Z=180^{\circ}$

Conclusion:

Reason:
4. Given: $\angle J K L$ is a right angle.

Conclusion:
Reason:

Conclusion:
Reason:

Conclusion:
Reason:
5. Given: $\overline{B D}$ bisects $\angle A B C$

Conclusion:

Reason:

Not:

Not:
6. Given: $\overline{P Q} \cong \overline{Q R}$

Conclusion:

Reason:
\qquad

Geometry Homework: Intro Geo Proofs - 3

Rewrite each definition in the form of two conditionals:

1. Perpendicular lines form right angles.
a. If two lines \qquad
b. If two lines \qquad
2. An angle bisector is a line (or segment) that divides an angle into two congruent parts.
a. If a line (or segment) \qquad
b. If a line (or segment) \qquad

In problems \#3-12, for each given, state a valid conclusion and a reason based on the definitions we have covered. (Note: some of these have more than one correct answer.)
3. Given: $\overline{A B} \perp \overline{C D}$

Conclusion: \qquad

Reason: \qquad
4. Given: X is the midpoint of $\overline{P Q}$.

Conclusion: \qquad

Reason: \qquad
5. Given: $\overline{B D}$ bisects $\angle A B C$.

Conclusion: \qquad

Reason: \qquad
6. Given: $\overline{B D}$ bisects $\overline{A C}$ at E.

Conclusion: \qquad

Reason: \qquad
7. Given: $\overline{A B} \cong \overline{A C}$

Conclusion: \qquad

Reason: \qquad
8. Given: $\overline{A C} \perp \overline{B C}$.
$1^{\text {st }}$ Conclusion: \qquad

Reason: \qquad
$2^{\text {nd }}$ Conclusion: \qquad

Reason: \qquad
9. Given: $\overline{R S T}$ and $\overline{R S} \cong \overline{S T}$.

Conclusion: \qquad

Reason: \qquad
10. Given: $\overline{J L}$ divides $\overline{K M}$ into two congruent parts.

Conclusion: \qquad

Reason: \qquad

11. Given: A is the vertex of isosceles triangle $S A M$

Conclusion: \qquad

Reason: \qquad
12. Given: $\angle F A T \cong \angle R A T$

Conclusion: \qquad

Reason: \qquad
13. Given $\overline{L I N E}, N$ is the midpoint of $\overline{I E}, L E=30$ and $N E$ is three less than $L I$. Find the numerical length of $L I$.
14. In the diagram at right, $\overrightarrow{B D}$ bisects $\angle A B C, m \angle A B D=66-2 x$ and $m \angle C B D=3 x-24$. Find the numerical value (a number, not just an algebraic expression) of $m \angle A B C$.

