Name:

Date:

Geometry Notes Into to Geo Proofs - 3: Definitions and Drawing Conclusions <u>Definitions (Review)</u>

In math, a precise definition should work "both ways." (It is a biconditional.)

Ex: A triangle is a polygon with exactly three sides.

- 1. If a polygon is a triangle, then it has exactly three sides.
- 2. If a polygon has exactly three sides, then it's a triangle.
- Ex: A square is a polygon with exactly four sides.
 - 1. If a polygon is a square, then it has exactly four sides.
 - 2. If a polygon has exactly four sides, then it's a square.

Drawing simple conclusions

We can use definitions to draw simple conclusions.

1. Given: *M* is the midpoint of \overline{AB} . Conclusion:

Reason:

Note: Remember, in proofs, a "given" is assumed to be true.

2. Given: \overline{PQR} and $\overline{PQ} \cong \overline{QR}$.

Conclusion:

М

A۰

۰B

Reason:

3. Given: $m \angle ABC + m \angle XYZ = 180^{\circ}$

Conclusion:

Reason:

4. Given: $\angle JKL$ is a right angle.

Conclusion:

Reason:

Conclusion:

Reason:

Conclusion:

Reason:

5. Given: \overline{BD} bisects $\angle ABC$ Conclusion:

Reason:

<u>Not</u>:

<u>Not</u>:

6. Given: $\overline{PQ} \cong \overline{QR}$

Conclusion:

Reason:

Name _____

Geometry Homework: Intro Geo Proofs - 3

Rewrite each definition in the form of two conditionals:

- 1. Perpendicular lines form right angles.
 - a. If two lines ______
 - b. If two lines _____

2. An angle bisector is a line (or segment) that divides an angle into two congruent parts.

- a. If a line (or segment) ______
- b. If a line (or segment)

In problems #3 - 12, for each given, state a valid conclusion **and a reason** based on the definitions we have covered. (Note: some of these have more than one correct answer.)

3.	Given: $AB \perp CD$ Conclusion:	
	Reason:	AC
4.	Given: X is the midpoint of \overline{PQ} .	р <u> </u>
	Conclusion:	
	Reason:	AB
5.	Given: \overline{BD} bisects $\angle ABC$.	
	Conclusion:	•
	Reason:	

6.	Given: \overline{BD} bisects \overline{AC} at E .	AD
	Conclusion:	B
	Reason:	
7.	Given: $\overline{AB} \cong \overline{AC}$	A A
	Conclusion:	
	Reason:	<u>B</u> <u>C</u>
8.	Given: $\overline{AC} \perp \overline{BC}$.	A
	1 st Conclusion:	
	Reason:	с <u></u> В
	2 nd Conclusion:	
	Reason:	
9.	Given: \overline{RST} and $\overline{RS} \cong \overline{ST}$.	R S T
	Conclusion:	
	Reason:	

10.	Given: \overline{JL} divides \overline{KM} into two congruent parts.	
	Conclusion:	M
11.	Given: <i>A</i> is the vertex of isosceles triangle <i>SAM</i> Conclusion:	S
	Reason:	AM
12.	Given: $\angle FAT \cong \angle RAT$	
	Conclusion:	F T R
	Reason:	

13. Given \overline{LINE} , N is the midpoint of \overline{IE} , LE = 30 and NE is three less than LI. Find the numerical length of LI.

14. In the diagram at right, \overrightarrow{BD} bisects $\angle ABC$, $m \angle ABD = 66 - 2x$ and $m \angle CBD = 3x - 24$. Find the numerical value (a number, not just an algebraic expression) of $m \angle ABC$.

