\qquad

Postulates (aka Axioms)

A postulate (also called an axiom) is a statement (not a definition) that is accepted without proof.
A theorem is a statement that has been proven using definitions, postulates and previously proven theorems.

Basic Postulates

1. Reflexive Postulate:
2. Transitive Postulate: If two things both equal the same (third) thing, then they equal each other.

Ex: If $a=c$ and $b=c$ then
Ex: If $\overline{A B} \cong \overline{B C}$ and $\overline{B C} \cong \overline{C A}$ then

Ex: Given: $\angle A E B \cong \angle B E C, \angle C E D \cong \angle B E C$
Conclusion:

3. Substitution Postulate: Equal quantities may be substituted for each other in any expression.

Ex: $2 x+y=6$
$y=3 x+1$

Ex: Given: $m \angle A O B+m \angle B O C=90^{\circ}$

$$
m \angle A O B=m \angle C O D
$$

Conclusion:

4. Partition Postulate: The whole equals

Ex:

Ex:

Ex: For each of the following, name the postulate illustrated.
a. Amy is the same height at Bob. Bob is the same height as Chris. So Amy is the same height as Chris.
b. Amy, Bob, Chris, Don, Emma and Fred are a hockey team. Fred is the goalie. George is another goalie. So Amy, Bob, Chris, Don, Emma and George are a hockey team.
c. Amy, Bob, Chris, Don, Emma and Fred are a hockey team. Fred is the goalie. Herb is baseball pitcher. So Amy, Bob, Chris, Don, Emma and Herb are a hockey team.
d. A soccer team is made up three forwards, four midfielders, three fullbacks and a goalkeeper.
e. A basketball team is made up a center, two forwards, two guards and a goalkeeper.

Ex: Which of the following is an example of the reflexive postulate?
(1) Amy looks in the mirror.
(2) Amy is the same height as Amy.
(3) Amy is the same height as Bob.
(4) Amy is taller than Bob. Bob is taller than Chris. So Amy is taller Chris.
(5) None of these.

Ex: Equality is transitive: If $a=b$ and $b=c$ then $a=c$. Which of the following are also transitive?
a. not equal to (\neq)
b. greater than (>)
c. parallel (||)
d. perpendicular (\perp)
e. "lives in the same town as"
f. "lives next door to"
g. "goes to the same school as"
h. "is related to (by blood)"

Name \qquad

Geometry HW: Intro Geo Proofs - 4 Basic Postulates

For \#1-4, name the postulate that justifies the conclusion.

1. Given: $\overline{F T} \cong \overline{A T}, \overline{A T} \cong \overline{R T}$

Conclusion: $\overline{F T} \cong \overline{R T}$
Reason: \qquad
2. Given: (Diagram at right)

Conclusion: $m \angle D B E=m \angle 4+m \angle 2+m \angle 5$
Reason: \qquad
3. Given: (Diagram at right)

Conclusion: $\overline{A T} \cong \overline{A T}$
Reason: \qquad
4. Given: $m \angle 1+m \angle 2=180^{\circ}, m \angle 2=m \angle 3$ (Diagram at right) Conclusion: $m \angle 1+m \angle 3=180$

Reason: \qquad

For the following, give a valid conclusion and a reason.
5. Given: $m \angle 1+m \angle 2=180 ; m \angle 3=m \angle 1$.

Conclusion: \qquad
Reason: \qquad
6. Given: $\overline{Q A}$ bisects $\angle U A D$.

Conclusion: \qquad
Reason: \qquad
7. Given: $m \angle A O B=90$.

Statement: $m \angle A O B=m \angle A O X+m \angle X O B$
Conclusion: \qquad
Reason: \qquad

Conclusion: \qquad
Reason: \qquad

You should already know the following from previous assignments but read it anyway.

If two line segments are added or subtracted, the result is another line segment. (See diagram below.)
Ex: a. $\overline{A C}+\overline{C D}=\overline{A D}$
b. $\overline{A C}-\overline{A B}=\overline{B C}$
c. $\overline{A B}+\overline{C D}=$ nothing (why?)
d. $\overline{B C}-\overline{A B}=$ nothing (why?)
e. $\overline{A C}+\overline{B D}=$ nothing (why?)
f. $\overline{B D}+\overline{A C}=$ nothing (why?)
g. $\overline{A C}+\overline{C E}=$ nothing (why?)

If two angles are added or subtracted, the result is another angle. (Same diagram.)
Ex: a. $\angle F C E+\angle E C D=\angle F C D$
b. $\angle A B F+\angle D C F=$ nothing (why?)
c. $\angle B C E-\angle F C E=\angle B C F$
d. $\angle A B F-\angle F B C=$ nothing (why?)
8. Use the diagram at right to answer the following:
a. $\overline{B P}+\overline{P C}=$ \qquad b. $\overline{A S}+\overline{S D}=$ \qquad .
c. $\overline{A S}+\overline{R D}=$ \qquad d. $\overline{A Q}+\overline{Q D}=$ \qquad .
e. $\overline{B D}-\overline{B Q}=$ \qquad f. $\overline{A D}-\overline{A S}=$ \qquad .
g. $\overline{A D}-\overline{S R}=$ \qquad h. $\overline{A R}-\overline{R D}=$ \qquad .

9. Use the same diagram to answer the following:
a. $\angle A B D+\angle D B C=$ \qquad .
b. $\angle A Q R+\angle D Q R=$ \qquad .
c. $\angle R D Q+\angle R S Q=$ \qquad .
d. $\angle B Q C-\angle B Q P=$ \qquad .
e. $\angle C Q S-\angle C Q D=$ \qquad .

f. $\angle D C Q-\angle P C Q=$ \qquad .
10. If M is the midpoint of $\overline{A Y}, A M=x+8$ and $A Y=3 x^{2}$, find the numerical length of $\overline{A Y}$.
11. If $\overline{H O T}$ is the perpendicular bisector of $\overline{D O G}, H O=2 x+1, O T=3 x-2$, $D O=4 x-5$, and $O G=2 x+3$, find the numerical length of $\overline{H O T}$.

