Name:

## Geometry Notes Into to Geo Proofs - 5: Addition and Subtraction Postulates

5. Addition Postulate: Equal quantities may be added to both sides of an equation.

| Ex: If<br>and      | a = b<br>x = y | Note: In the Addition Postulate, we always add two equations to get a new equation. |
|--------------------|----------------|-------------------------------------------------------------------------------------|
| then               |                |                                                                                     |
| Ex: 2 <i>x</i> + 3 | <i>y</i> = 9   | Note: Always line up the equal signs and add                                        |
| <i>x</i> – 3       | <i>y</i> = 3   | vertically on each side.                                                            |



Note: For addition of line segments to make sense,







Ex: Given:  $\angle AFB \cong \angle DCE$ ,  $\angle BFE \cong \angle ECB$  (use diagram above)

Note: For addition of angles to make sense, the angles must be adjacent (and non-overlapping).



Ex: Given:  $\angle YDM \cong \angle NDO$ 



## 6. **Subtraction Postulate:** Equal quantities may be subtracted from both sides of an equation.



Ex:  $\angle ABC \cong \angle ADC$ ,  $\angle ABD \cong \angle CDB$ 



Note: For subtraction of angles to make sense, the angles must



Ex: Given:  $\angle QPS \cong \angle TPR$ 



| Ν | aı | m | е |
|---|----|---|---|
|---|----|---|---|

## Geometry HW: Intro Geo Proofs – 5 Addition and Subtraction Postulate

For each of the following givens, state a valid conclusion based on the postulates we have covered **and tell what postulate was used**.

| 1. | Given: $\overline{AB} \cong \overline{AC}$ , $\overline{AC} \cong \overline{AD}$ .                                       | A<br>M                |
|----|--------------------------------------------------------------------------------------------------------------------------|-----------------------|
|    | Conclusion:                                                                                                              |                       |
|    | Reason:                                                                                                                  |                       |
| 2. | Given: $\overline{ADB}$ , $\overline{AEC}$ , $\overline{AD} \cong \overline{AE}$ , $\overline{DB} \cong \overline{EC}$ . | $\bigwedge^{A}$       |
|    | Conclusion:                                                                                                              | — D E                 |
|    | Reason:                                                                                                                  | $B \xrightarrow{F} C$ |
| 3. | Given: $\angle ABC \cong \angle ACB$ , $\angle ABD \cong \angle ACD$                                                     | A                     |
|    | Conclusion:                                                                                                              |                       |
|    | Reason:                                                                                                                  | в                     |
| 4. | Given: $\angle ABE \cong \angle CDE$ , $\angle CBE \cong \angle ADE$                                                     | A D                   |
|    | Conclusion:                                                                                                              |                       |
|    | Reason:                                                                                                                  | _                     |
| 5. | Given: $\overline{AEB}$ , $\overline{DFC}$ , $\overline{AB} \cong \overline{CD}$ , $\overline{AE} \cong \overline{CF}$ . | A E B                 |
|    | Conclusion:                                                                                                              |                       |

| Reason: |  |
|---------|--|
| neason. |  |

6

| Given: $\angle BAD \cong \angle CAD$ , $\angle BAD \cong \angle FAE$ | A                     |
|----------------------------------------------------------------------|-----------------------|
| Conclusion:                                                          | $B \xrightarrow{D} C$ |
| Reason:                                                              |                       |

E F

Probems #7 – 9 are simple "statement-reason" geometry proofs. For each one, fill in the missing reasons with appropriate postulates.

7. **Given:**  $m \angle KJL + m \angle LJM = 90$ ,  $m \angle KJL = m \angle MJN$ 



9. **Given**:  $\angle KJM \cong \angle NJL$ 



10. In the diagram at right,  $\overrightarrow{AB} \perp \overrightarrow{BC}$ ,  $m \angle ABD = 3x + 17$  and  $m \angle CBD = 5x - 3$ . Find the value of x.



11. What is the measure of the supplement of an angle that measures *x* degrees?