Name:

Date:

Geometry Notes Intro to Geo Proofs - 8: Simple Angle Theorems

A *theorem* is a statement that has been proven using definitions, postulates and/or previously proven theorems.

• Theorem: All right angles are congruent.

Given: $\angle A$ and $\angle B$ are right angles

Prove: $\angle A \cong \angle B$

- Theorem: All straight angles are congruent.
- Theorem: If two adjacent angles form a straight line, they are supplementary.

Given: $\angle AOC$ and $\angle BOC$, \overrightarrow{AOB} Prove: $\angle AOC$ and $\angle BOC$ are supplementary

- Theorem: If two adjacent angles form a right angle, then they are complementary.
- Theorem: If two angles are congruent, then their supplements are also congruent.

Given: $\angle 1 \cong \angle 4$, $\angle 2$ supp. to $\angle 1$, $\angle 3$ supp. to $\angle 4$

Prove: $\angle 2 \cong \angle 3$

• Theorem: If two angles are supplementary to the same angle, then they are congruent.

Note: The previous two theorems are still true if the words "supplements" and "supplementary" are replaced by "complements" and "complementary".

Definition: *Vertical angles* are non-adjacent angles formed by two intersecting lines.

• Theorem: Vertical angles are congruent. (Prove for HW.)

Ex: Given: \overrightarrow{ABCD} , $\angle ABP \cong \angle DCP$

Prove: $\angle CBP \cong \angle BCP$

Ρ D В С

Statement	Reason

Ex: Given: \overline{MOR} , \overline{LOQ} , $\overline{NO} \perp \overline{LO}$, $\overline{PO} \perp \overline{OR}$

Statement	Reason

1. Based on the diagrams, tell whether the given angles are vertical angles.

- a. $\angle 1$ and $\angle 3$ b. $\angle 1$ and $\angle 4$
- c. $\angle 2$ and $\angle 4$ d. $\angle 5$ and $\angle 7$
- 2. We wish to prove the following theorem: Vertical angles are congruent.

Given: \overrightarrow{AEB} and \overrightarrow{CED}

Prove: $\angle AEC \cong \angle BED$

a. Draw a diagram.

b. Outline a proof of the theorem. (There is more than one way to do this. The easiest way is to consider how $\angle AEC$ and $\angle BED$ are related to $\angle CEB$ and then use theorems covered in today's notes.)

Write a complete statement-reason geometry proof for each of #1 - 4.

3. Given: \overline{ABCD} , $\angle ABG \cong \angle DCG$ Prove: $\angle BAE \cong \angle FAC$

5. **Given:** \overline{PIW} , \overline{GIN} , \overline{IT} bisects $\angle PIG$

Prove: ∠*NIT* ≅ ∠*WIT*

6. If \overline{AEB} intersects \overline{CED} at *E*, $m \angle BEC = 5x - 25$, and $m \angle DEA = 7x - 65$, find the numerical values of the measures of all four angles.

7. If \overline{AEB} intersects \overline{CED} at E, $m \angle AEC = 5(x + 15)$, and $m \angle AED = 7x - 75$, find the numerical values of the measures of all four angles.