As we study topics in geometry, we will learn many new terms we will define them by referring to other terms we have
we will define them by reterring to other terms we have
Geometry Terms
Geometry: The study of the properties and relationships of points, lines, planes, and solids.
1. Undefined terms: a set of terms we accept without referencing to previously defined terms.
A. Point: Has no length, width, or height. It merely indicates a
position No dimension.
B. Line: An infinite set of Points that extends endlessly in both directions.
length
Curved Line Straight Line: This is what line will mean unless otherwise stated.
Symbolism: A B Label AB Or 8A
C. Plane: A set of points that extends infinitely across a shape looks like flat Surface in all directions.
2 Dimensions & No thickness Report - Length * name a plane by using letters that identify 3 points on plane The Definitions: USES known words to describe that do not all lie on the same
a new word.
A. Collinear Set of Points: Set of points, all of which lie on the same
B C Any 2 pts are collinear

Examples:

1-4-3 = 1-7 = 7

1. Find the distance between the points whose coordinates on the real number line are -4 and 3.

2. In the figure, A, B, and C are the vertices of a triangle, and D is a point on AC.

- a. Name three collinear points. A. D. C
- b. Name three noncollinear points. A. B. C
- c. Which point is between A and C?
- d. If D is the midpoint of \overline{AC} , name two congruent segments in the figure.

Use the figure shown:

- a. Name a point between s and n.
- b. Name a point between s and q and also between m and r.
- c. Name two rays, each of which has point m as an endpoint.

4. Find the required distance if A, B, and C are collinear points and point B is between A and C.

a.
$$AB = 5$$
, $BC = 7$, $AC = ? $5 + 7 = 12$$

18-3-15

b.
$$AB = 3$$
, $AC = 18$, $BC = ?$

5.

MN bisects RQ

1.
$$SM \cong RN$$

2. $PM \cong GN$

6. Use the figure in \$\pm\$5 to complete the following statements.

a.
$$SP - SM = MP$$

b.
$$RN + NQ = RQ$$

C.
$$RQ - NQ = RN$$

Definitions Involving Angles						
1. Angle: Set of all points that is the union of 2 rays having the same endpoint * angles can also be formed by intersecting lines (lines that need arcross) interior						
* and	les can also be	tormed l	exterior P			
inter	rsecting lines (li	nes that i	interior			
	A ray C					
£	7		vertex' (endpt)			
V	A. Straight	Angle:	An angle that is the union of opposite rays (measures 180°).			
			Commence of the commence of th			
	B. Acute	Amala	* lines measure 180°			
	B. MCOIC	Angle:	An angle whose measure is greater than zero, but less than 90°.			
	1		30°			
	c. Right.	Angle:				
	J	Allgle.	An angle whose measure is 90°.			
Next	Al luc -		- 9c°			
	D. Obtuse	Angle:	An angle whose measure is greater than 90°, but less than 180°.			
	Ballar					
	E. retux	Angle:	An angle whose measure is greater than 180°. less than 360° & ages all the			
			180°. less than 360° * goes all the way arour			
V.,			anala			
NC	ote: $\angle A \cong \angle B$		means same <u>anall</u>			
Angles measured by degrees Equality means the angles have the same MLASURE.						
11.	Bisector of an Angle:	A ray v	whose endpoint is the <u>Vertex</u> of the angle			
	and divides that angle into 2 congruent parts					
	3/	we can				
	M. B					
	140	of the state of	the angle bisector of CBAC			
28° F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	< SAO	¥ < DAC			
20	C					

^{**} If an angle measures x degrees, what would the measure of its supplement be? $180 - \chi$

* noncommon sides are opposite rays.

Examples:

- 1. For the figure shown:
 - a. Name A in four other ways.

2. The measure of two angles that are complementary are in the ratio of 7:2. Find the measure of each angle. 7x + 2x = 90°

3. The degree measure of an angle and its supplement are equal. Find the measure of each angle. X +X = 180

4. In the figure \overrightarrow{LM} and \overrightarrow{PQ} intersect at \overrightarrow{R} . Name two pairs of vertical angles.

5. If $\angle BAD$ is a right angle, name two complementary angles.

6. Complete the following statements, which refer to the figure shown.

a.
$$mLMN = m\angle LMP + m\angle PMN$$

b.
$$mLMP = m\angle LMN - m\angle NMP$$

Name Key		
Geometry R:	Deductive Reasoning	

HW: Don't go over last sheet in class check

Directions: Write a valid statement and reason for each. Draw a picture for each. LOOK AT YOUR I

1. Given: A is the midpoint of \overline{XY}

Statements	Reasons
1. A is the midpoint of XY	1. Given
2. XA ≅ AY	2. If a point is a midpt, then it divides the segment into a \(\sigma \) segment

Statements	Reasons
AB bisects CD	1. Given
2. CM = MD	2. If a segment bisects another segment, it divides the segment into 2 congruent segments.

3. Given: In $\triangle ABC$, altitude \overline{CD} is drawn to side \overline{A}	3.	Given:	In	ΔABC .	altitude	\overline{CD}	is drawn	to	side	\overline{A}
---	----	--------	----	----------------	----------	-----------------	----------	----	------	----------------

	1	
A		E

Statements	Reasons
1. In AABC, CD is the altitude to AB	1. Given
2. CD L AB	2. If a segment is an altitude in a A, then it is I to the opposite side.

4. Given: <XYZ and <TYS are vertical angles

	Reasons	Statements
	1. Given	1. <xyz <="" <'s<="" and="" are="" td="" tys="" vertical=""></xyz>
vertical	2. If & is are ver	2. < XYZ \(\sigma\) < TYS
e v	2. If 2 is are v	2. < XYZ \(\sigma\) < TYS

3. Given: In $\triangle ABC$, D is a point on \overline{AC} and \overline{DB} bisects $\angle ABC$

Statements	Reasons
1. DB bisects < ABC	1. Given
2. < CBD ≌ < DBA	2. If a segment bisects on angle, it divides the angle into 2 congruent is

B

we listed underined terms and definitions that we accept
as being true. We used the undefined terms and definitions
to draw conclusions. At time statements are made in geometry that
are neither undefined terms Postulates nor definitions, and yet we know
these are true statements. Some of these statements seem so
I. Postulate: A statement whose truth is accepted without proof. I obvious we accept
them without proof.

A postulational system is made up of undefined terms, defined terms, and postulates. We use all of these together with the laws of reasoning to prove the truth of theorems.

The entire body of knowledge that we know as geometry consits of undefined terms, defined terms, postulates, and thms we use to prove other II. Equality Postulates (Properties) thms and justify applications of these thn

A. Reflexive Postulate: a quantity is equal to itself

In $\triangle ABC$,

the length of a segment is equal to itself

$$AB = AB$$
 $BC = BC$

AC = AC

the measure of an angle is equal to itself

$$m < A = m < A$$
 $m < B = m < B$ $m < C = m < C$

B. Symmetric Postulate: a quantity may be reversed

If a=b and b=c, then a=c

C. Transitive Postulate: If quantities are equal to the same quantity, then they are equal to each other.

Ex) Given:
$$m \angle x = 40^{\circ}$$

 $m \angle y = 40^{\circ}$
 $\therefore |\langle X \cong \langle y \rangle$

* segments Ex) equal to the same segment are equal to each other

Given:
$$AB = LM$$

 $CD = RS$
 $LM = RS$
 $\therefore AB = CD$

Ex) Given:
$$\angle A = \angle B$$
 (chain rule)
 $\frac{\angle B = \angle C}{\therefore \langle A = \langle C \rangle}$

different is in \triangle ABD BD

Reflexive Postulate in Proofs: Use when a segment or angle belongs to 2 geometric figures which overlap or share a common side.

is in A BCD

3. B D E

AE is in AABE is in A ADE AE = AE

< D is in △ DEC < D is in △ ABD $\langle D = \langle D$

Substitution, Partition, Addition, and Subtraction Postulates

I. Substitution Postulate: A quantity may be substituted for its equal in any expression.

y=X+7 and $x=3$	Given:	XZ = 2XY $XY = YZ$	
we can conclude that y=3+7	Prove:	XZ = 2YZ	
X		Y	Z

Statements	Reasons
I) XZ = ZXÝ	1) Given
2) XY = YZ	2) Given
3) XZ = 2YZ	3) Substitution
	(a quantity may be substituted for its equal in any expression of equality.)

II. Partition Postulate: A whole is equal to the sum of its parts.

$$\overline{AD} = \overline{AB} + \overline{BC} + \overline{CD}$$

III. Addition Postulate: If a = b and c = d, then a + C = b + d

- If equal quantities are added to equal quantities, the sums are equal.
- If congruent segments are added to congruent segments, the sums are equal.
- If congruent angles are added to congruent angles, the sums are equal.

BC = EF		
Prove: $AC = DF$		
A	В	C
•	•	
D	E	F
0		

Given: AB = DE

Statements	Reasons
I)AB = DE	1) Given
2)BC=EF	2) Given
3) AB+BC = DE+EF	3) Addition postulate
4) AB+BC = AC DE + EF = DF	4) Partition postulate
5) AC = DF	5) Substitution Postul

Given: $\angle ABG \cong \angle DEH$

 $\angle GBC \cong \angle HEF$

Prove: $\angle ABC \cong \angle DEF$

Statements

1) < ABG = < DEH

2) < GBC = (HEF

3) <ABG +(GBC =

(DEH+ (HEF

4) < ABG+<GBC=

< DEH+ < HEF =

1) Given

2) Given 3) Addition Postulate

Reasons

5) <ABC \(\sigma\) (DEF 5) Substitution postulate

IV. Subtraction Postulate: If a = b and c = d, then a - c = b - d

- If equal quantities are subtracted from equal quantities, the differences are equal.
- If \cong segments are subtracted from \cong segments, the differences are equal.
- If \cong angles are added to \cong angles, the differences are equal.

Given: $\angle DAC \cong \angle ECA$ $\angle 1 \cong \angle 2$ Prove: $\angle 3 \cong \angle 4$

11∠DAC \$ ∠ECA

Statements

2) (1 = < 2

3) < DAC - < | = LECA-LZ

4) < DAC - < 1 = 13 LECA- <2=4

Reasons

1) given