Warm-up

Happy Monday

$$6(2k+5)-3k = 66$$

$$2(3x+5) = 5(2x-4)-4x$$

$$6x+10 = 10x-20-4x$$

$$-6x+10 = -6x-20$$

$$-6x+10 = -20$$
No solution

Date: Geometry Notes Intro to Geo Proofs - 1: Lines and Segments **Undefined Terms** Point: A location in space; no size. (zero dimensions). Line: A continuous "straight" set of points that extends indefinitely (forever) in two opposite directions (one dimension). Plane: A continuous set of points forming a "flat surface" extending forever in two dimensions. Space: All points. Three dimensions. (Not real important until the end of the course. For now, we will do everything "in a plane.") Between: In the diagram, P is between A and B; Q and S are not. **Definitions** A ray is a "half line;" it has one endpoint and extends indefinitely in one direction. A line segment consists of two endpoints and all the points between the The *measure* (length) of a line segment is the AB= 8 Line segment \overline{AB} (at right) has measure (length) 8: Note: \overline{AB} (with the bar over it) represents the actual segment (an object); AB (without the bar) represents the length of the segment (a number) Two line segments are *congruent* (\cong) if

Postulate: Every segment has exactly one midpoint.

Ex: M is the midpoint of line segment \overline{PQ} . If $PM = x^2 - 8$ and MQ = 2x + 27, find the numerical length of \overline{PQ} .

$$x^{2} - 8 = 2x + 27$$

$$-2x - 27 - 2x - 27$$

$$x^{2} - 2x - 35 = 0$$

$$(x + 5)(x - 7) = 0$$

$$x = -5$$

$$x = 7$$

Three or more points are collinear if they are all

in a Line

A

B

C

Any 2 pt 5

are collinear

Ex: Given \overline{FLAT} , A is the midpoint of \overline{LT} , FT = 28 and LA is 6 less than twice FL. Find the length of \overline{AT} .

A **bisector** of a segment is a line, ray or segment that intersects a segment at its midpoint. Therefore, a bisector of a segment

Nan	ne: Date:	
	Geometry Homework: Intro Geo Proofs – 1	
1.	Draw a single diagram to illustrate the following givens: \overline{ILAT} , \overline{CAP} . Notes: 1) Since they are written separately, you should <i>not</i> assume that <i>all</i> the points are collinear. 2) There cannot be two different points <i>A</i> in the same problem.	
2.	If M is the midpoint of \overline{AB} , $AM = x^2 + 24$ and $MB = 10x$, find the length of \overline{AB} .	
3.	\overline{PR} bisects \overline{ST} at Q . $PQ = 4x + 12$, $QR = 9x - 13$, $SQ = 6x - 5$ and $QT = 3x + 16$. Find the length of \overline{PR} .	
4.	Given: \overline{MATH} , A is the midpoint of \overline{MT} , $MH = 21$ and $AH = 15$. Find TH .	

5. In \overline{RST} , RS = 7x - 1, ST = 2x + 3 and RT = 12x - 7. Find the numerical value of RT.

READ: Adding and Subtracting Line Segments

Everybody knows you can add and subtract numbers: 7 + 3 = 10 and 7 - 3 = 4 make perfect sense. However, adding and subtracting *people* (not *numbers* of people but actual persons) is meaningless. It is nonsense to say Devin + Bree = Ken or Devin - Bree = Thor.

Line segments are somewhere in between. In general, you can't add or subtract just any two random line segments and get another segment. But *sometimes* it makes sense. Your job is to understand when.

IMPORTANT:

1) $\overline{AB} + \overline{BC} = \overline{AC}$ only makes sense when A, B, and C are collinear and B is between A and C. In other words, to add segments, they must be collinear and the second one must start where the first one ends.

$$\overline{AB} + \overline{BC} = \overline{AC}$$

$$\overline{AB} + \overline{BC} = \text{nonsense}$$

$$\overline{AB} + \overline{CD} = \text{nonsense}$$

$$\overline{AC} + \overline{BD} = \text{nonsense}$$

2) $\overline{AC} - \overline{BC} = \overline{AB}$ and $\overline{AC} - \overline{AB} = \overline{BC}$ only make sense when A, B, and C are collinear and B is between A and C. In other words, to subtract segments, the one being subtracted must be part of the one being subtracted from and they must share an endpoint.

$$\overline{AC} - \overline{BC} = \overline{AB}$$

$$\overline{AC} - \overline{BC} = \text{nonsense}$$

$$\overline{AD} - \overline{BC} = \text{nonsense}$$

$$\overline{AC} - \overline{AB} = \overline{BC}$$

$$\overline{AC} - \overline{BC} = \text{nonsense}$$

$$\overline{AC} - \overline{BD} = \text{nonsense}$$

6. Based on the diagram at right, tell if each of the following is True or False. Remember the difference between \overline{AB} and AB.

b.
$$\overline{AB} + \overline{BC} = \overline{CP}$$

c.
$$AB + BC = AC$$

d.
$$\overline{AB} + \overline{BC} = \overline{AC}$$

e.
$$AC - BC = AB$$

f.
$$\overline{AC} - \overline{BC} = \overline{AB}$$

g.
$$PC - PB = CD$$

g.
$$PC - PB = CD$$
 h. $\overline{PC} - \overline{PB} = \overline{CD}$

7. In the diagram at right, \overline{FLAG} . For each of the following, either fill in the appropriate line segment or write "nonsense."

a
$$\overline{IA} + \overline{AG} =$$

b.
$$\overline{FL} + \overline{LP} =$$

a.
$$\overline{LA} + \overline{AG} =$$
 _____ b. $\overline{FL} + \overline{LP} =$ _____ c. $\overline{FA} + \overline{LG} =$ _____

d.
$$\overline{FL} + \overline{AG} =$$

e.
$$FL+LG=$$

d.
$$\overline{FL} + \overline{AG} =$$
 _____ e. $\overline{FL} + \overline{LG} =$ _____ f. $\overline{FL} + \overline{LA} + \overline{AG} =$ _____

g.
$$\overline{FP} + \overline{FL} = \underline{\hspace{1cm}}$$

h.
$$\overline{FA} + \overline{LA} =$$

g.
$$\overline{FP} + \overline{FL} = \underline{\hspace{1cm}}$$
 h. $\overline{FA} + \overline{LA} = \underline{\hspace{1cm}}$ i. $\overline{FA} - \overline{LA} = \underline{\hspace{1cm}}$

j.
$$\overline{FP} - \overline{FL} =$$
 ______. k. $\overline{FG} - \overline{FL} =$ ______ l. $\overline{FG} - \overline{LA} =$ _____

k.
$$\overline{FG} - \overline{FL} =$$

I.
$$\overline{FG} - \overline{LA} =$$

