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Postulates

I. Postulate: A statement whose truth is accepted without proof.

A postulational system is made up of undefined terms, defined terms, and postulates.

We use all of these together with the laws of reasoning to prove the truth of
theorems.

Theorems: A true statement that must be proved by deductive reasoning.

Il. Equality Postulates (Properties)
A. Reflexive Postulate: a quantity is equal to itself

in AABC,

the length of a segment is equal to itself

the measure of an angle is equal to itself

B. Symmetric Postulate: a quantity may be reversed
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C. Transitive Postulate: If quantities are equal to the same quantity, then they are
equal to each other.

Ex) Given: mZx=40°
mZLy =40° X

Ex) Given: AB=LM o —@ o s
LM =RS
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Ex) Given: ZA=2/B
£LB=/C

Reflexive Postulate in Proofs: Use when a segment or angle belongs to 2 geometric
figures which overlap or share a common side.
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Making Conclusions: For each piece of given information make a valid conclusion based

on the following diagram.

b

. BD bisects Z/CBE

. E is the midpoint of BA

. BD is an altitude of ACBE

. BD=ED
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A. Reflexive Postulate: a quantity is equal to itself

In AABC,

the length of a segment is equal to itself

AB-AB BC= BC AC= AC

the measure of an angle is equal to itself

M<A =mSA m<{B=m¢B m<C=m(C

B. Symmetric Postulate: a quantity may be reversed
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If quantities are equal to the same quantity, then they are
equal to each other.
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Substitution, Partition, Addition, and Subtraction Postulates

I. Substitution Postulate: A quantity may be substituted for its equal in any expression.

Given; XZ =2XY Statements Reasons

XY =YZ

Prove: XZ =2YZ

X Y Z
4

Il. Partition Postulate: A whole is equal to the sum of its parts.

mZABC =

S|
>
I

IIl. Addition Postulate: If a=band ¢ =d, then

e If equal quantities are added to equal quantities, the sums are equal.
e If congruent segments are added to congruent segments, the sums are equal.
o If congruent angles are added to congruent angles, the sums are equal.

Given: AB=DE Statements Reasons

BC=EF

Prove: AC=DF

A
*— ¢ L

=




Given; ZABG = /DEH Statements Reasons

ZGBC = LHEF

Prove: £ZABC = ZDEF

—> A H

IV. Subtraction Postulate: If a =b and ¢ =d, then

« If equal quantities are subtracted from equal quantities, the differences are equal.
 If = segments are subtracted from = segments, the differences are equal.
o If = angles are added to = angles, the differences are equal.

Given: «ZDAC = ZECA Statements Reasons
Ll=/2
Prove: /3= /4
B
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State the postulate that allows you to conclude what you are asked to prove.
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Given: Given:
2 WZY = +WXY. ' Iy
<RZY = +RXS. o Dl 4F.
AD = EB.
P_rove: - %Prove:
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AM = CN.
MB = ND.
Proye:

AB = CD.






Substitution, Partition, Addition, and Subtraction Postulates

$¥ |. Substitution Postulate: A quantity may be substituted for its equal in any expression.
Y: < Given: XZ =2XY Statements Reasons
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Il. Partition Postulate: A whole is equal to the sum of its parts.
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lll. Addition Postulate: If a=band c=d, then_ A TC = b+d

e If equal quantities are added to equal quantities, the sums are equal.

e If congruent segments are added to congruent segments, the sums are equal.

¢ [f congruent angles are added to congruent angles, the sums are equal.
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IV. Subtraction Postulate: If a =band ¢ =d, then O-C= b d

 If equal quantities are subtracted from equal quantities, the differences are equal.
o If = segments are subtracted from = segments, the differences are equal.
e If = angles are added to = angles, the differences are equal.
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